Electronic Structure of (n,0) Zigzag Carbon Nanotubes: Cluster and Crystal Approach
نویسندگان
چکیده
We study the electronic structure of (n,0) zigzag carbon nanotubes by means of two complementary numerical methods. Using the semiempirical PM3 method, we carry out quantum-chemical calculations for tube fragments of different symmetry and size, which represent these tubes. Using the tight-binding method, we proceed in parallel to determine the band structure of these tubes. The effect of cluster size on the structure of frontier orbitals and on the cluster stability is investigated for the (6,0) tube. We show that the highest occupied molecular orbitals (HOMOs) and the lowest unoccupied molecular orbitals (LUMOs) of the (n,0) tube fragments are localized on the edge atoms. The comparison between the band structure of the (6,0) tube and the molecular orbitals of the (6,0) tube fragment with 13 carbon hexagons along the tube axis indicates that the spatial structure of the HOMO′s and the LUMO′s directly corresponds to that of the Bloch wave functions of occupied and unoccupied π bands near the Fermi level.
منابع مشابه
A computational investigation on NMR Characterization and electronic properties of some zigzag nanotubes
DFT calculations were applied to evaluate the electronic and magnetic properties of zigzag BC2Nnanotubes based on the 13C, 15N, and 11B NMR parameters and natural charge analysis. Weconsidered three types of zigzag nanotubes, ZZ-1, ZZ-2, and ZZ-3 (n, 0) with n = 8, 12, and 14. Theobtained results indicated the divisions of the electrostatic environments around C nuclei into a fewlayers, consist...
متن کاملStructure and electronic properties of single–walled zigzag BN and B3C2N3 nanotubes using first-principles methods
The structure and the electronic properties of single-walled zigzag BN and B3C2N3 nanotubes (n, 0; n=4–10) were investigated using first-principles calculations based on a density functional theory. A plane–wave basis set with periodic boundary conditions in conjunction with Vanderbilt ultrasoft pseudo-potential was employed. The energy gap of ZB3C<su...
متن کاملStructure and electronic properties of single–walled zigzag BN and B3C2N3 nanotubes using first-principles methods
The structure and the electronic properties of single-walled zigzag BN and B3C2N3 nanotubes (n, 0; n=4–10) were investigated using first-principles calculations based on a density functional theory. A plane–wave basis set with periodic boundary conditions in conjunction with Vanderbilt ultrasoft pseudo-potential was employed. The energy gap of ZB3C<su...
متن کاملCO2 adsorption on the surface and open ended of Single wall carbon nanotubes (SWCNTs): A Comparative study
Adsorption of CO2 on the surface of Single-wall zigzag (5,0) and armchair (4,4) carbon nanotubes (SWCNTs) were studied through using density functional theory (DFT) calculations. Optimizations of geometric were performed at the B3PW91 level of 6-311++G** method standard basis set using GAUSSIAN 03 package of program [1]. Structural models were optimized and adsorption energies, band gap, charge...
متن کاملCO2 adsorption on the surface and open ended of Single wall carbon nanotubes (SWCNTs): A Comparative study
Adsorption of CO2 on the surface of Single-wall zigzag (5,0) and armchair (4,4) carbon nanotubes (SWCNTs) were studied through using density functional theory (DFT) calculations. Optimizations of geometric were performed at the B3PW91 level of 6-311++G** method standard basis set using GAUSSIAN 03 package of program [1]. Structural models were optimized and adsorption energies, band gap, charge...
متن کامل